
J
H
E
P
0
1
(
2
0
0
6
)
1
4
3

Published by Institute of Physics Publishing for SISSA

Received: October 21, 2005

Revised: December 15, 2005

Accepted: January 6, 2006

Published: January 26, 2006

Planar super-Landau models

Evgeny Ivanov

Bogoliubov Laboratory of Theoretical Physics, JINR

141980 Dubna, Moscow Region, Russia

E-mail: eivanov@theor.jinr.ru

Luca Mezincescu

Department of Physics, University of Miami

Coral Gables, FL 33124, U.S.A.

E-mail: mezincescu@server.physics.miami.edu

Paul K. Townsend

Department of Applied Mathematics and Theoretical Physics

Centre for Mathematical Sciences, University of Cambridge

Wilberforce Road, Cambridge, CB3 0WA, U.K.

E-mail: p.k.townsend@damtp.cam.ac.uk

Abstract: In previous papers we solved the Landau problems, indexed by 2M , for a

particle on the “superflag” SU(2|1)/[U(1) × U(1)], the M = 0 case being equivalent to the
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models in the planar limit. For M = 0 we have a particle on the complex superplane C
(1|1);

its Hilbert space is the tensor product of that of the Landau model with the 4-state space

of a “fermionic” Landau model. Only the lowest level is ghost-free, but for M > 0 there are

no ghosts in the first [2M ] + 1 levels. When 2M is an integer, the (2M + 1)th level states

form short supermultiplets as a consequence of a fermionic gauge invariance analogous to

the “kappa-symmetry” of the superparticle.
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1. Introduction

In 1930 Landau posed and solved the quantum mechanical problem of a charged particle

in a plane orthogonal to a uniform magnetic field, showing in particular that the particle’s

energy is restricted to a series of “Landau levels” [1]. In the low-energy limit only the

lowest level is relevant, and the low-energy physics is described by a first-order “Lowest-

Landau-Level” (LLL) model with a phase space that is a non-commutative version of the

original configuration space. In more recent times, this connection with non-commutative

geometry has led to a revival of interest in Landau-type models.

In 1983 Haldane generalized the Landau model to a particle on a sphere in E
3 of

radius R, in the uniform magnetic field B generated by a magnetic monopole at the centre

of the sphere [2]. If the monopole strength is n times the minimal value allowed by the

Dirac quantization condition then B ∝ n/R2 and the planar Landau model is recovered

in the limit that n → ∞ and R → ∞ with B kept fixed. If instead one takes the limit

as R → 0 with n fixed then one finds a LLL model with an action that is n times the

minimal U(1) Wess-Zumino (WZ) term associated with the description of the sphere as

SU(2)/U(1) ∼= CP 1. The phase space of this LLL model is a fuzzy sphere [3].

In two previous papers [4, 5] we have considered Landau models for a particle on

a superspace with CP 1 body. The minimal dimension symmetric superspace with this

property is CP (1|1) ∼= SU(2|1)/U(1|1), which we called the supersphere.1 The LLL model

for a particle on the supersphere yields a physical realization of the fuzzy supersphere [4].

1Other definitions of “supersphere” occur in the literature (references can be found in our previous

papers) but none is obviously equivalent to our definition.
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Although this model is perfectly physical, the full Landau model for a particle on the

supersphere is unphysical because the higher Landau levels all contain ghosts; i.e., states of

negative norm. This feature is directly related to the presence of a non-canonical fermionic

kinetic term with two time derivatives.

In an attempt to circumvent this problem, we considered in [5] the Landau model

for a particle on the coset superspace SU(2|1)/[U(1) × U(1)]. This supermanifold again

has CP 1 body but it is not a symmetric superspace; it is an analog of the flag manifold

SU(3)/[U(1) × U(1)], and for this reason we called it the “superflag”. For given magnetic

field strength there is a one-parameter family of superflag Landau models parametrized, in

the notation of [5], by the coefficient 2M of an additional, purely “fermionic”, WZ term.

Although the relationship between the superflag and supersphere Landau models was not

spelled out in our earlier work, one can show that supersphere model is equivalent to the

M = 0 superflag model. The parameter M has no effect on the energy levels, which are

therefore the same as those of the supersphere Landau model, but one now finds that

states in the first [2M ]+1 levels have positive norm, although all higher levels still contain

states of negative norm.2 When 2M is an integer, the (2M + 1)th level states form a short

representation of SU(2|1) as a consequence of the presence of zero-norm states.

One aim of this paper is to elucidate these features of spherical super-Landau models

by an analysis of the much simpler models obtained in the planar limit. The planar limit

of the supersphere is the complex superplane C
(1|1). This can be viewed as the coset

superspace

IU(1|1)/[U(1|1) ×Z] , (1.1)

where IU(1, 1) is a central extension of a contraction of SU(2|1) and Z is the abelian

group generated by the central charge. The corresponding “superplane Landau model”

has a quadratic Lagrangian and a Hilbert space that is the tensor product of the standard

Landau model Hilbert space with a 4-state space of a “fermionic Landau model”. Analysis

of this 4-state system shows clearly how negative norm states arise as a consequence of

the two-derivative, and hence non-canonical, fermion kinetic term, but also why the LLL

is ghost-free.

This analysis of the superplane Landau model suggests a strategy for removing the

negative norm states by modifying the Lagrangian in such a way as to cancel the two-

derivative, or “second-order”, fermion kinetic term. This requires the introduction of

interactions with an additional complex “Goldstino” variable and the introduction of a

first-order kinetic term for it, with coefficient 2M . The resulting model, which is the

Landau model for a particle on the coset superspace

IU(1|1)/[U(1) × U(1) ×Z] , (1.2)

is precisely the planar limit of the superflag Landau model; we call it the “planar super-

flag Landau model”. The cancellation of the second-order fermion term in this “planar

superflag” Landau model is incomplete, however, because it survives in a “bodyless” form

2[2M ] is the integer part of 2M .
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with nilpotent Goldstino bilinear coefficient. At the quantum level, this results not in the

elimination of all negative norm states but rather in their banishment to the higher Landau

levels, exactly as found in [5] for the superflag Landau model. One may then discard these

levels to arrive at a model with a finite-dimensional Hilbert space that generalizes the LLL

model obtained by the truncation to the ground state level, exactly as argued in [5] for the

superflag Landau model.

Thus many of the peculiar properties of the supersphere and superflag models of [4, 5]

survive the planar limit and are readily understood in this simpler context. In particular,

the structure of the phase-space constraints is simple to analyse in the planar limit, and

it explains why zero norm states appear in the (2M + 1)th level when 2M is an integer.

Recall that the Hamiltonian formulation of models with canonical fermion kinetic terms

requires fermionic constraints on the phase superspace. No such constraints are needed

for the superplane model as it has non-canonical, second-order, fermion kinetic terms, but

constraints are needed for the (M > 0) planar superflag model. Usually, these constraints

are either all “second class” (in Dirac’s terminology) or (as in many superparticle models) a

definite mixture of first and second class, the first class constraints indicating the presence

of a fermionic gauge invariance. Here we find fermionic constraints that are second class

everywhere except on a particular energy surface, where they are of mixed type.3 This

implies a fermionic gauge invariance analogous to the “kappa-symmetry” of the superpar-

ticle, but restricted to a subspace of definite energy. Because of energy quantization, this

has an effect on the quantum theory only when 2M is an integer, and it is responsible for

the zero-norm states in the (2M + 1)th level.

We shall begin with an analysis of the superplane Landau model. Its quantization is es-

sentially trivial because the Lagrangian is quadratic, but it provides a useful starting point,

and a simple context in which one can discuss the IU(1|1) symmetries. We then show how

a modification of this Lagrangian to include interactions with a Goldstino variable yields

the planar superflag Landau models, indexed by the coefficient 2M of a fermionic WZ

term. The equivalence with the superplane Landau model for M = 0 is then established;

this equivalence is not obvious and requires careful consideration of the Hamiltonian con-

straint structure of the planar superflag models. We then use this Hamiltonian analysis to

quantize the planar superflag model, using the methods of our previous papers. Finally,

we present a geometrical formulation of our results.

2. The superplane Landau model

We begin with the superplane Landau model. By “superplane” we mean the superspace

C
(1|1) parametrized by complex coordinates (z, ζ), where z is a complex number and ζ a

complex anticommuting variable. The superplane Lagrangian is

L0 = Lb + Lf , (2.1)

3Something similar occurs for higher-dimensional Chern-Simons theories [6] but in the context of bosonic

constraints.
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where

Lb = |ż|2 − iκ (żz̄ − ˙̄zz) (2.2)

is the Lagrangian for the standard planar Landau model with energy spacing 2κ (which

we take to be positive), and

Lf = ζ̇ ˙̄ζ − iκ
(

ζ̇ ζ̄ + ˙̄ζζ
)

(2.3)

is the Lagrangian for a fermionic Landau model in terms of an anticommuting complex

variable ζ. We call the total Lagrangian L0 because it is quadratic; we will later add

interaction terms to get the Lagrangian of the planar superflag Landau model.

The Hilbert space of this model is obviously a tensor product of the Hilbert space of

the Landau model with that of the fermionic Landau model with Lagrangian Lf , so all the

new features must arise from the latter model, which we therefore analyse first. Because

Lf contains a “second-order” kinetic term, and second-order is “higher-order” for fermions,

we should expect ghosts (negative norm states). We shall show that this intuition is indeed

correct, but also that all LLL levels have positive norm. This too is expected since the

LLL states are all that survive in large κ limit in which all terms of the second order in

time derivative become irrelevant.

Having analysed the fermionic Landau model, the spectrum of states of the full su-

perplane model, and their norms, is easily determined. However, the degeneracies in the

spectrum are consequences of symmetries of the full Lagrangian. The relevant symmetry

group is the supergroup IU(1|1) obtained by a contraction of the SU(2|1) symmetry of the

supersphere. We exhibit these symmetries, and show precisely how IU(1|1) is obtained

from SU(2|1).

2.1 Fermionic Landau model

For the purposes of comparison we first summarize Landau’s results for the standard,

“bosonic” Landau model. The equation of motion has the general solution

z = z0 + (ż0/κ)e−iκt sin κt , (2.4)

so the motion is periodic with angular frequency 2κ. To pass to the quantum theory it is

convenient to use the Hamiltonian form of the Lagrangian

Lb = żp + ˙̄zp̄ − Hb , Hb = |p + iκz̄|2 , (2.5)

where p is the complex momentum conjugate to z. To obtain the quantum Hamiltonian

Ĥb we then make the replacements

p → p̂ = −i∂z , p̄ → ˆ̄p = −i∂z̄ . (2.6)

There is a trivial ordering ambiguity but the natural symmetric ordering yields

Ĥb = a†a + κ , (2.7)

where

a = i (∂z̄ + κz) , a† = i (∂z − κz̄) . (2.8)
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These operators satisfy the creation and annihilation operator commutation relation

[a, a†] = 2κ . (2.9)

The ground states, which span the LLL, have energy κ and are annihilated by a. States

in the higher Landau levels are obtained by acting on a LLL state with a†, so the energy

levels are E = 2κ(N + 1/2) for non-negative integer N .

The equation of motion of the fermionic Landau model has the general solution

ζ = ζ0 + (ζ̇0/κ)e−iκt sin κt , (2.10)

so the motion is again periodic with period 2κ. The Hamiltonian form of the Lagrangian is

Lf = −iζ̇π − i ˙̄ζπ̄ − Hf , Hf = (π̄ − κζ)
(

π − κζ̄
)

, (2.11)

where π is the momentum conjugate to ζ. We use here the Grassmann-odd phase space

conventions of [7] for which π̄ is the complex conjugate of π. Note that this Lagrangian

is invariant under the rotational and translational isometries of the complex Grassmann

plane (together with a corresponding phase rotation of π). To pass to the quantum theory

we make the replacements

π → π̂ = ∂ζ , π̄ → ˆ̄π = ∂ζ̄ , (2.12)

where the Grassmann-odd derivatives should be understood as left-derivatives. There is

a trivial ordering ambiguity in the Hamiltonian, but the natural antisymmetric ordering

yields the quantum Hamiltonian4

Ĥf = −α†α − κ , (2.13)

where

α =
(

∂ζ̄ − κζ
)

, α† =
(

∂ζ − κζ̄
)

. (2.14)

These operators satisfy the anticommutation relations

{α,α†} = −2κ . (2.15)

The Hamiltonian Ĥf has four linear independent eigenfunctions Ψ(ζ, ζ̄). Two, which we

denote collectively by Ψ−, have energy −κ and the other two, which we denote collectively

by Ψ+, have energy +κ. From the requirement that Ψ− is annihilated by α and Ψ+ is

annihilated by α†, it can be seen that

Ψ− = A−

(

1 + κζ̄ζ
)

+ B−ζ ,

Ψ+ = A+

(

1 − κζ̄ζ
)

+ B+ζ̄ . (2.16)

Note that Ψ+ can be viewed as an excited state generated by the creation operator α† from

the “vacuum” Ψ−.

4By changing the sign of κ and interchanging the roles of annihilation and creation operators, this could

be brought to the form H = α†α − κ, which is the standard form for a fermionic oscillator. However, the

formulation given here is the one most convenient for the purpose of combining it with the standard Landau

model to get the superplane Landau model that we consider here.
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Up to an overall factor, which we may choose at our convenience, the natural inner

product on wavefunctions (invariant under translations and phase rotations of ζ) is

〈Ψ1,Ψ2〉 = ∂ζ∂ζ̄ (Ψ∗
1Ψ2) . (2.17)

It is straightforward to verify that wavefunctions with different energies are orthogonal

with respect to this inner product, and that

〈Ψ−,Ψ−〉 = 2κĀ−A− + B̄−B− ,

〈Ψ+,Ψ+〉 = −2κĀ+A+ − B̄+B+ . (2.18)

In arriving at this result we have been careful not to assume any particular Grassmann-

parity for the complex constants A and B . It would be possible to suppose that all are

Grassmann even, in which case it is clear that if the states of Ψ− have positive norm

then the states of Ψ+ have negative norm. If instead one assumes that Ψ− and Ψ+ have

a definite Grassmann parity, so that either the A or the B coefficient is Grassmann-odd,

then it is still true that the states of Ψ− have non-negative norm (this now being a complex

supernumber) while those of the higher level have a non-positive norm, with some state

of negative norm, and this is true whatever assumption one makes about the Grassmann

parity of Ψ± . Thus, only Ψ− has all states of non-negative norm.

As for the standard Landau model, one can take a limit in which only the lowest

Landau level survives. The corresponding LLL Lagrangian is just the fermion WZ term.

This is the simplest case of the “odd-coset” models studied in [7], with a Hilbert space

spanned by the two positive-norm states.

Before moving on, we pause to comment on the limit in which κ = 0. The bosonic

Landau model becomes a model for a particle moving freely on the complex plane. In

contrast, the fermionic Landau model is unphysical when κ = 0 because the Hamiltonian

operator Ĥf is then nilpotent and hence non-diagonalizable. For this reason we henceforth

consider only κ 6= 0. Although this restriction is unphysical in the Landau model, where

κ is proportional to the magnetic field, it may be physical in any context in which the

fermionic Landau model plays a role since the parameter κ may then have some other

interpretation.

2.2 The superplane model and its symmetries

We now return to the Landau model for a particle on the superplane. The Hamiltonian

form of the Lagrangian is

L0 =
(

żp − iζ̇π
)

+ c.c. − (Hb + Hf ) . (2.19)

The quantum Hamiltonian has energy levels 2κN for non-negative integer N . In particular

the states |LLL〉 of the LLL have zero energy and satisfy

a|LLL〉 = 0 , α|LLL〉 = 0 . (2.20)

All these states have positive norm. The first exited states (with energy 2κ) are linear

combinations of states of the form a†|LLL〉, which all have positive norm, and states of

the form α†|LLL〉, some of which have negative norm. Thus, only the LLL has all states

of positive norm.
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Note that the zero point energy cancels between the bosonic and fermionic sectors,

as happens in supersymmetric quantum mechanics. However, the “supersymmetry” of

the superplane Landau model is rather different from that of supersymmetric quantum

mechanics. As for any quadratic Lagrangian (except those with only Grassmann-odd

variables [7]), the full symmetry group is infinite-dimensional. However, the symmetries of

relevance here are those inherited from the supersphere. These are the super-translations

of the superplane, the SU(1|1) super-rotations, and an independent U(1) phase rotation.

The super-translation transformations are
(

δz

δζ

)

=

(

c

γ

)

,

(

δp

δπ

)

= κ

(−ic̄

γ̄

)

, (2.21)

for complex constant c and complex Grassmann-odd constant γ. This symmetry is gener-

ated by the operators

P = −i (∂z + κz̄) , P † = −i (∂z̄ − κz)

Π = ∂ζ + κζ̄ , Π† = ∂ζ̄ + κζ . (2.22)

Their non-zero (anti)commutation relations are

[P,P †] = 2κ , {Π†,Π} = 2κ . (2.23)

Thus, κ is a central charge. We will call the superalgebra defined by these relations the

“magnetic translation superalgebra”.

The SU(1|1) super-rotation transformations are

(

δz

δζ

)

=

(

iθ −ε̄

−ε iθ

)(

z

ζ

)

,

(

δp

δπ

)

=

(−iθ −iε

−iε̄ −iθ

)(

p

π

)

(2.24)

for constant angle θ and complex Grassmann-odd parameter ε. The odd transformations

are generated by the operators

Q = z∂ζ − ζ̄∂z̄ , Q† = z̄∂ζ̄ + ζ∂z (2.25)

and the even transformation is generated by the Hermitian operator

C = z∂z + ζ∂ζ − z̄∂z̄ − ζ̄∂ζ̄ . (2.26)

The only non-zero (anti)commutation relations of these generators is

{Q,Q†} = C . (2.27)

This is analogous to a standard supersymmetry algebra but with C as the Hamiltonian. It

should be noted, however, that many of the usual consequences of supersymmetry would

not apply anyway because of the negative-norm states.

The SU(1|1) charges, together with the supertranslation charges, span a semi-direct

product superalgebra which we will call ISU(1|1). In particular,

[Q,P ] = iΠ , {Q†,Π} = iP , [C,P ] = −P , [C,Π] = −Π . (2.28)
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However, as shown by (2.23), we must include a central charge Z = κ; this generates an

abelian group, which we call Z and include as part of the definition of ISU(1|1). The

superplane can now be viewed as the coset superspace ISU(1|1)/[SU(1|1) ×Z] .

Finally we have an independent U(1) phase rotation with infinitesimal transformations

δz = iϕz , δp = −iϕp ,

δζ = −iϕζ , δπ = iϕπ . (2.29)

This is generated by the Hermitian operator

J =
1

2

[

z∂z − ζ∂ζ − z̄∂z̄ + ζ̄∂ζ̄

]

(2.30)

which has the following non-zero commutation relations with the generators of ISU(1|1)

[J,Q] = Q , [J,Q†] = −Q† , [J, P ] = −P , [J,Π] = Π . (2.31)

The supergroup generated by the five even charges (P,P †, C, J, Z) and the four odd charges

(Π,Π†, Q,Q†) will be called IU(1|1), and the superplane can be viewed as the coset super-

space IU(1|1)/[U(1|1)×Z], as mentioned in the introduction. This has the advantage that

IU(1|1) is a contraction of SU(2|1), as we now show.

2.3 IU(1|1) as contraction of SU(2|1)

We now sketch how the algebra of the supergroup IU(1|1) defined by the relations (2.23),

(2.27), (2.28) and (2.31) can be reproduced as a contraction of the superalgebra su(2|1).
The contraction procedure is similar to the one relating su(2) to the algebra of magnetic

translations [8].

The bosonic body of the superalgebra su(2|1) is su(2)⊕u(1) with the generators J±, J3

and B [5]

[J+, J−] = −J3 , [J3, J±] = ±2J± , [B, J3] = 0 , [B, J±] = ∓J± ,

J†
3 = J3 , B† = B , J†

+ = −J− . (2.32)

The odd sector is spanned by an SU(2) doublet generators S1, S2, S̄
1, S̄2 with the following

non-vanishing (anti)commutation relations (and their conjugates):

{S1, S̄
1} = J3 + B , {S2, S̄

2} = B , {S1, S̄
2} = −J+ , {S2, S̄

1} = J− ,

[J3, S1] = S1 , [J3, S2] = −S2 , [B,S1] = −Q1 , [B,S2] = 0 ,

[J+, S1] = 0 , [J+, S2] = −S1 , [J−, S1] = S2 , [J−, S2] = 0 . (2.33)

Note that the second U(1) generator B basically has the same commutation relations with

J± as J3,
5 but both these generators (B and J3) have different action on the spinors.

5This set of generators can be split into the mutually commuting u(1) and su(2) sets by passing to the

appropriate linear combination of B and J3, but we prefer to use this basis in order to have a correspondence

with the notation of ref. [5].
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The contraction leading to the magnetic translation superalgebra introduced in the

previous subsection goes as follows. Firstly one redefines (and/or rename) the generators as

J3 = 2n − 2J , J+ = iR P , J− = iR P † , S1 = R Π , S2 = −Q , B = C , (2.34)

where n and R are two real parameters (R is a radius of the sphere S2 ∼ SU(2)/U(1)

while n, in the dynamical framework of a particle moving on the superflag manifold

SU(2|1)/[U(1) × U(1)] [5], acquires a nice meaning of the strength of the SU(2)/U(1)

WZW term). Then one substitutes this into (2.33) and let R → ∞ , assuming that

n

R2
≡ κ < ∞ . (2.35)

As the result of this contraction procedure, the algebra of the su(2) generators J±, J3 in

(2.33) goes over into the magnetic translation algebra (given by the first relation in (2.23))

and the relations (2.33) become just (2.27), (2.28) and the second relation in (2.23) (plus

the evident additional commutation relations with the generator J , eq. (2.31)). It is

worth noting that, in the contraction limit, one of the U(1) charges, J , fully decouples and

generates an outer U(1) automorphism, while B ≡ C still remains in the r.h.s. of {S2, S̄
2} .

Another notable feature is the appearance of the constant central charge κ which thus

formally extends the full number of bosonic generators to five as compared with four such

generators in SU(2|1); this also happens in the purely bosonic su(2) or sl(2, R) cases [8].

3. The planar superflag Landau model

The problem with the Landau model on the superplane is that the second-order Lagrangian

for the Grassmann-odd variable implies the presence of ghosts (negative norm states) in the

quantum theory. This is forced by the Q-supersymmetry of SU(1|1) that relates bosons

to fermions, so any solution to this problem would appear to require a breaking of this

symmetry, but we would need the breaking to be spontaneous in order to maintain the

IU(1|1) symmetry of the Lagrangian. This suggests that we aim for a non-linear realization

of the Q-supersymmetry by introducing a Goldstino variable ξ with the Q-transformation

δξ = ε . (3.1)

We now observe that the new Lagrangian

L̃ = L0 −
(

|ż|2 + ζ̇ ˙̄ζ
) (

ξ + ζ̇/ż
) (

ξ̄ + ˙̄ζ/ ˙̄z
)

(3.2)

is invariant under all the symmetries previously established for L0. Collecting terms, we

have

L̃ =
(

1 + ξ̄ξ
)

|ż|2 +
(

ξ̄ ˙̄zζ̇ − ξż ˙̄ζ
)

+ ξ̄ξζ̇ ˙̄ζ − iκ
(

żz̄ − ˙̄zz + ζ̇ ζ̄ + ˙̄ζζ
)

, (3.3)

which shows both that the new Lagrangian is well-defined at ż = 0, despite initial appear-

ances, and that the second-order kinetic term ζ̇ ˙̄ζ term now has a nilpotent coefficient. The

implications of this are not immediately apparent but will become clear in due course.
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Although it might appear that we have now solved, or at least ameliorated, the problem

of ghosts, we have actually just hidden it; the ξ equation of motion is
(

ż ˙̄z + ζ̇ ˙̄ζ
)

ξ + ˙̄zζ̇ = 0 (3.4)

and if ż 6= 0 this implies

ξ = − ζ̇

ż
. (3.5)

Back substitution into L̃ yields the quadratic Lagrangian L0 with which we started, so L̃ is

classically equivalent to L0, except possibly when ż = 0, which implies zero classical energy.

Thus, apart from this subtlety, to which we return later, nothing has yet been accomplished.

However, there is now an additional WZ term that we can add to the Lagrangian arising

from the closed invariant 2-form dξ̄ ∧ dξ. This leads us to the Lagrangian

L =
(

1 + ξ̄ξ
)

|ż|2 +
(

ξ̄ ˙̄zζ̇ − ξż ˙̄ζ
)

+ ξ̄ξζ̇ ˙̄ζ

− iκ
(

żz̄ − ˙̄zz + ζ̇ ζ̄ + ˙̄ζζ
)

+ iM
(

ξ̄ξ̇ + ξ ˙̄ξ
)

(3.6)

for some constant M . This model is actually the planar limit of the superflag Landau

model of [5].

We now proceed to a detailed analysis of this model, in its Hamiltonian formulation,

first classically and then quantum-mechanically. We then provide a more geometrical

derivation of our results based on the theory of non-linear realizations.

3.1 Hamiltonian analysis

Introducing the complex Grassmann-odd momentum χ conjugate to ξ, the Hamiltonian

form of the Lagrangian (3.6) is6

L =
[

żp̃ − iζ̇π − iξ̇χ + λζϕζ + λξϕξ

]

+ c.c. − H , (3.7)

where the Hamiltonian is

H =
(

1 − ξ̄ξ
)

|p̃ + iκz̄|2 (3.8)

and the complex Grassmann-odd variables λζ and λξ are Lagrange multipliers for the

“fermionic” constraints ϕζ ≈ 0 and ϕξ ≈ 0 (in Dirac’s “weak equality” notation). The

constraint functions are

ϕζ = π − κζ̄ + iξ̄ (p̃ + iκz̄) , ϕξ = χ − Mξ̄ . (3.9)

To establish the equivalence of (3.7) to (3.6) we solve the constraints to reduce (3.7) to

L =
{[

żp̃ − iκ ζ̇ ζ̄ − iMξ̇ξ̄
]

+ c.c
}

− |p̃ + iκz̄|2 − ˙̄ζζ̇

+
[

(p̃ + iκz̄) ξ̄ + ˙̄ζ
] [

(¯̃p − iκz) ξ + ζ̇
]

. (3.10)

Elimination of p̃ now yields (3.6).

6We here denote by p̃ the momentum conjugate to z to distinguish it from the momentum conjugate to

z in a different set of variables that we will later use to quantize the model.
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The occurrence of fermion constraints is to be expected in any model with canonical,

first-order, fermion kinetic terms, and these constraints are normally second class, in Dirac’s

terminology. Here, however, we have an additional “bodyless” second-order fermion kinetic

term, and this has a curious consequence. A computation shows that although the Poisson

bracket of the analytic constraint functions (ϕζ , ϕξ) is zero, the matrix of Poisson brackets

of these functions with their complex conjugates is non-zero. In fact,

det

( {ϕζ , ϕ̄ζ}PB {ϕζ , ϕ̄ξ}PB

{ϕξ , ϕ̄ζ}PB {ϕξ , ϕ̄ξ}PB

)

=
(

1 + ξ̄ξ
)

[H − 4κM ] . (3.11)

It follows that the constraints considered together with their complex conjugates are second

class everywhere except on the surface H = 4κM ; on this surface there are first class

constraints.

This unusual state of affairs merits a more detailed analysis. We begin with the M = 0

case, for which the energy surface H = 4κM reduces to the point H = 0. As long as the

classical energy (1−ξ̄ξ) |p̃ + iκz̄|2 (and hence |p̃ + iκz̄|2) is non-zero we may treat ξ in (3.10)

as an auxiliary variable that can be eliminated by its equation of motion

(p̃ + iκz̄)
[

(¯̃p − iκz)ξ + ζ̇
]

= 0 . (3.12)

This is equivalent to

ξ = −ζ̇/ (¯̃p − iκz) (3.13)

provided that |p̃ + iκz̄|2 6= 0. After substitution for ξ in (3.10), and subsequent elimination

of the momentum variable p̃, we recover the Lagrangian of the superplane Landau model.

This confirms our analysis of the previous subsection, but now it is clear how to proceed

when the classical energy vanishes; in this case p̃ = −iκz̄ and the Lagrangian (3.10)

becomes7

L0 = −iκ
{

żz̄ − z ˙̄z + ζ̇ ζ̄ + ˙̄ζζ
}

. (3.14)

This is the LLL Lagrangian for a particle on the superplane; the proof of the equivalence

of the superplane model to the M = 0 planar superflag model is thus completed.

Let us now consider the case of arbitrary M . The properties of our model on the

exceptional energy surface H = 4κM can be studied via a new Lagrangian obtained by

imposing H = 4κM as a new, bosonic, constraint via a new Lagrange multiplier variable

e(t). The resulting Lagrangian is equivalent to

L =
[

żp̃ − iζ̇π − iξ̇χ + λζϕζ + λξϕξ

]

+ c.c. − 4κM

− e
[

|p̃ + iκz̄|2 − 4
(

1 + ξ̄ξ
)

κM
]

. (3.15)

This action is time-reparametrization invariant, with e as the einbein. Moreover, as should

be clear from its construction, this action also has a hidden fermionic gauge invariance. In

this respect, it is analogous to the superparticle action with its hidden “kappa-symmetry”,

the constraint H = 4κM being analogous to the standard mass-shell superparticle condition

7Note that the variables (z, ζ) are still independent and off-shell.
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with 2
√

κM as a “mass”. Many methods have been developed to deal with the mixed first

and second class fermionic constraints of the superparticle, and these could be applied here.

Perhaps the simplest is just to solve all the constraints to obtain a physical phase-space

Lagrangian, and that is what we will do here.

The fermionic constraints are trivially solved for the fermionic momenta (π, χ). The

new bosonic constraint H = 4κM has the general solution

p̃ + iκz̄ = 2eiφ

(

1 +
1

2
ξ̄ξ

) √
κM , (3.16)

for some arbitrary phase φ(t). Using this to eliminate p̃ in favour of φ, we arrive at the

Lagrangian

L4κM = −iκ
(

żz̄ − z ˙̄z + ζ̇ ζ̄ − ζ ˙̄ζ
)

+ 2

(

1 +
1

2
ξ̄ξ

) √
κM

[

eiφ
(

ż + ξ̄ζ̇
)

+ c.c.
]

+ iM
(

ξ̄ξ̇ + ξ ˙̄ξ
)

− 4κM. (3.17)

The new phase variable φ is actually a gauge variable for the U(1) gauge invariance with

infinitesimal gauge transformations

δφ = a(t) , δz =

√

M

κ

(

1 +
1

2
ξ̄ξ

)

e−iφ a(t) , δζ = −
√

M

κ
ξe−iφ a(t) , (3.18)

where a(t) is the U(1) gauge parameter. This gauge invariance allows us to set φ(t) = 0 .

Much more remarkable is the fermionic gauge invariance with infinitesimal gauge trans-

formations

δξ = ω , δζ = −i

√

M

κ
e−iφω , δz =

i

2

√

M

κ
e−iφ

(

ω̄ξ + ξ̄ω
)

, (3.19)

where ω(t) is the complex anticommuting gauge parameter. This gauge invariance allows

us to set ξ(t) = 0 .

For the gauge choices φ = 0 and ξ = 0 , the Lagrangian (3.17) reduces to

L4κM = −iκ
(

ẏȳ − y ˙̄y + ζ̇ ζ̄ − ζ ˙̄ζ
)

− 4κM , (3.20)

where

y = z − i
√

M/κ . (3.21)

This is again the LLL Lagrangian for the superplane model, as in (3.14), but with the vac-

uum energy shifted by 4κM . We shall see later that this result has interesting consequences

for the quantum theory when M is an integer.

Before turning to the quantum theory we must address a further technical problem;

the Poisson bracket of the Hamiltonian (3.8) with the constraint function ϕζ is not even

weakly zero. This problem could be circumvented by considering8

H ′ =
(

1 + ξ̄ξ
) ∣

∣p̃ + iκz̄ + iξ
(

π − κζ̄
)∣

∣

2
, (3.22)

8Note the change of sign in the prefactor.
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which has weakly vanishing Poisson brackets with the constraints and is weakly equal to

H. However, this has the disadvantage that H ′ depends on the fermionic momenta. We

prefer to proceed differently. We define the new anticommuting variables

ξ1 = ζ + zξ , ξ2 = ξ , (3.23)

and let (χ1, χ2) be their canonically conjugate momenta. Defining

p = p̃ + iξπ , (3.24)

we find that the Lagrangian in the new variables is

L =
[

żp − iξ̇iχi + λiϕi

]

+ c.c. − H , (3.25)

where λi are Lagrange multipliers for the constraints ϕi ≈ 0 (i = 1, 2). The constraint

functions are

ϕ1 = χ1 − κξ̄1

(

1 − ξ̄2ξ
2
)

+ iξ̄2p ,

ϕ2 = χ2 + κzξ̄1

(

1 − ξ̄2ξ
2
)

− iξ̄2zp − Mξ̄2 , (3.26)

and the Hamiltonian is now

H =
(

1 + ξ̄2ξ2

)
∣

∣p + iκz̄ − iκξ2
(

ξ̄1 − z̄ξ̄2

)
∣

∣

2
. (3.27)

This Hamiltonian has (strongly) vanishing Poisson brackets with the constraints. As before,

all these constraints are second class except on the surface H = 4κM .

3.2 Quantization

We will quantize the planar superflag model of the previous section using the Gupta-

Bleuler method; details and references can be found in our previous papers [7, 4, 5]. This

is a method of quantization in the presence of analytic constraints that are second class

only when considered in conjunction with their complex conjugates, exactly as we found

for the constraints of the planar superflag model. We also found that there is a surface on

which these constraints are not second class, but we will deal with this problem when and

where it presents a difficulty. We also work with the variables (z, ξ1, ξ2) in this section.

The method instructs us to quantize initially as there were no constraint, so we make

the usual replacements

p → p̂ = −i∂z , p̄ → −i∂z̄ , χi → χ̂i = ∂ξi , χ̄i = ∂ξ̄i
. (3.28)

The Hamiltonian can be written in terms of the operators

∇z = ∂z − κz̄ + κξ2
(

ξ̄1 − z̄ξ̄2

)

, ∇z̄ = ∂z̄ + κz + κξ̄2

(

ξ1 − zξ2
)

, (3.29)

which satisfy

[∇z,∇z̄] = 2κ
(

1 − ξ̄2ξ
2
)

. (3.30)
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There is an operator ordering ambiguity in the quantum Hamiltonian, but this affects only

the choice of ground state energy. If we resolve this ambiguity in the usual way we arrive

at the Hamiltonian operator

Ĥ = −1

2

(

1 + ξ̄2ξ
2
)

{∇z,∇z̄} = −
(

1 + ξ̄2ξ
2
)

∇z∇z̄ + κ . (3.31)

This operator Ĥ is positive definite. As we shall shortly see, the lowest eigenvalue of Ĥ

is κ, so the cancellation of vacuum energies that we noted for the superplane model no

longer occurs. This is because the Hamiltonian no longer depends on ζ. This raises a

puzzle because the vacuum energy of the M = 0 planar superflag model is also equal

to κ, but this model is classically equivalent to the superplane model. There is thus an

apparent quantum inequivalence of the M = 0 planar superflag model with the superplane

Landau model, but this is a trivial difference that could be removed by a different operator

ordering prescription. As we shall see, the equivalence holds quantum mechanically in all

other respects.

The constraints are now taken into account by the physical state conditions

ˆ̄ϕ
i
Ψ = 0 (i = 1, 2) , (3.32)

where

ˆ̄ϕ
1

= ∂ξ̄1
− κξ1

(

1 − ξ̄2ξ
2
)

− ξ2∂z̄ ,

ˆ̄ϕ
2

= ∂ξ̄2
+ κz̄ξ1

(

1 − ξ̄2ξ
2
)

+ ξ2z̄∂z̄ − Mξ2 . (3.33)

Solving these constraints one finds that physical wavefunctions have the form

Ψ = K Φ
(

z, z̄sh, ξ1, ξ2
)

, z̄sh = z̄ − ξ2
(

ξ̄1 − z̄ξ̄2

)

, (3.34)

where K is a real prefactor which we write as

K = KM
1 e−κK2 (3.35)

with

K1 =
(

1 + ξ̄2ξ
2
)

, K2 =
[

|z|2 +
(

ξ1 − zξ2
) (

ξ̄1 − z̄ξ̄2

)]

. (3.36)

Thus, physical states are described by “chiral ” wavefunctions Φ
(

z, z̄sh, ξ1, ξ2
)

(we use this

term because of the close analogy to chiral superfields in supersymmetric field theories).

Observe that

∇z̄Ψ = K∂z̄Φ , ∇zΦ = K ∇̃zΦ , (3.37)

where

∇̃z = ∂z − 2κz̄sh . (3.38)

This derivative has the property that it preserves chirality by taking a chiral wavefunc-

tion to another chiral wavefunction. It follows that the differential operators (∇z,∇z̄)

become the differential operators (∇̃z, ∂z̄) in the chiral basis, i.e., when acting on reduced

wavefunctions. In particular the hamiltonian operator Ĥ is replaced by

Ĥred = −K1∇̃z∂z̄ + κ (3.39)

in the chiral basis.
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Reduced ground state wavefunctions, of energy kappa, are analytic, so ground state

wavefunctions have the form

Ψ(0) = K Φ
(0)
0 (z, ξ1, ξ2) . (3.40)

One can now generate an infinite set of eigenvectors of Ĥ by considering:

Ψ(N) = ∇N
z

[

KΦ
(N)
0

(

z, ξi
)

]

= K∇̃N
z Φ

(N)
0

(

z, ξi
)

. (3.41)

Indeed, using the commutation relation

[

∂z̄, ∇̃N
z

]

= −2κNK−1
1 ∇̃N−1

z , (3.42)

it can be seen that

Ĥred

(

∇̃N
z Φ

(N)
0

)

= 2κ

(

N +
1

2

)

(

∇̃N
z Φ

(N)
0

)

, (3.43)

and hence that the wavefunctions (3.41) are eigenfunctions of Ĥ with energy 2κ
(

N + 1
2

)

.

Note that ∇̃z preserves chirality, but not the analyticity, so the reduced function Φ(N) =

∇̃N
z Φ

(N)
0 (z, ξ1, ξ2) is a particular case of Φ defined in (3.34), with a special dependence on

z̄sh . Note also that the analytic “ground state” functions Φ
(N)
0 for different N differ in

their “external” C charge C̃ = 2M −N . The wavefunctions Ψ(N) and Φ(N) have the fixed

charge C̃ = 2M for any N , since ∇z and ∇̃z carry C̃ = 1 (see subsection 3.3).

We have now found the energy eigenstates so we turn to the question of their norm.

The integration measure

dµ = dzdz̄∂ξ̄1
∂ξ1∂ξ̄2

∂ξ2 (3.44)

is invariant under the symmetries of the model established previously, so we define the

norm of Ψ by

|||Ψ|||2 =

∫

dµ |Ψ|2 =

∫

dµ K2M
1 e−2κK2 |Φ|2 . (3.45)

For a ground state, the reduced wavefunction is analytic and can be expanded as

Φ
(0)
0 = A(0) + ξiψ

(0)
i + F (0)ξ1ξ2 , (3.46)

where all the coefficients are functions of z . A calculation shows that its norm is

|||Φ(0)
0 |||2 = 4κM ||A(0)||2 + 2M ||ψ(0)

1 ||2 + 2κ||ψ(0)
2 + zψ

(0)
1 ||2 + ||F (0)||2 , (3.47)

where

||f ||2 =

∫

dzdz̄ e−2κ|z|2 |f(z, z̄)|2 (3.48)

for any function f on the complex plane. Note that we have a shortened multiplet when

M = 0 because there are then states with zero norm. This is the quantum manifestation

of the classical observation that for M = 0 the constraints are not all second class when

H = 0 .
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Consider now the first excited states, at N = 1 . Integrating by parts with respect to

∂z , ∂z̄, one sees that

|||Ψ(1)|||2 = 2κ

∫

dµ K2M−1
1 e−2κK2 |Φ(1)

0 |2 . (3.49)

In other words, the coefficient M is shifted downwards by 1/2. Similarly,

|||Ψ(N)|||2 = (2κ)NN !

∫

dµ K2M−N
1 e−2κK2 |Φ(N)

0 |2 , (3.50)

so the coefficient M is shifted downwards by N/2 at level N . It follows that |||Ψ(N)|||
is also given by the formula (3.47), apart from the numerical factor (2κ)NN !, but with

2M → 2M − N . Thus, negative contributions to the norm must appear for N > 2M .

If 2M is a positive integer then the highest level without negative norm states is the

(2M + 1)th level with N = 2M , but this level has zero norm states, as for M = 0.

The states at this level will therefore form short supermultiplets as only the components

ψ
(2M)
2 + zψ

(2M)
1 , F (2M) contribute to |||Ψ(N=2M)||| . The energy of the N = 2M level for

integer 2M is 4κM + κ. Apart from the quantum shift by κ noted earlier, this is just

the energy of the exceptional energy surface H = 4κM of the classical theory. Zero norm

states in the quantum theory at this level are what one expects from the fermionic gauge

invariance at this level.

Just as one can discard all excited states of the supersphere, or superplane, Landau

model to arrive at a perfectly physical LLL model, so we can discard all states in the

N > 2M Landau levels of the superflag, or planar superflag, models to arrive at a physical

model described by the LLL together with the first N excited levels. This remains true

when 2M is not an integer (provided it is positive), the only difference being that the top

level, with N = [2M ] , has no zero norm states.

3.3 Geometrical interpretation

So far we have used a direct algebraic analysis because our aim has been to show how

the results of our previous paper on the superflag Landau model can be understood very

explicitly in the planar limit, without any elaborate formalism. However, we now develop

a geometrical interpretation in terms of superfields on the coset superspace

K = IU(1|1)/[U(1) × U(1) ×Z] . (3.51)

Recall that Z is the group generated by the “magnetic” central charge Z, which we identify

with the constant κ .

The coset representative in the appropriate exponential parametrization can be written

in terms of coordinates (u, η1, η2) as

g = eA1eA2 , (3.52)

where9

A1 = η1Π − η2Q + η̄1Π
† − η̄2Q

† , A2 = −iuP − iūP † , (3.53)

9We take the Grassmann-odd coordinates ηi to anticommute with the odd charges. One can equally well

take them to commute with the odd charges because with an appropriate change in the definition (3.52)

one obtains identical results.
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where the signs are chosen for later convenience. The coordinates appearing in the above

parametrization of the coset superspace are related to the coordinates (z, ζ, ξ) used previ-

ously by

u = z − 1

2
ζξ̄ , η1 = ζ + zξ − 1

3
ξ̄ξ , η2 = ξ . (3.54)

The left-covariant Cartan forms and the superconnections on the stability subgroup

generated by C and the central charge κ are defined by10

g−1dg = iωP P + iω̄P P † + ω1Π + ω̄1Π
† − ω2Q − ω̄2Q

† + ACC + A2κκ . (3.55)

A calculation yields11

ωP = −
(

1 +
1

2
ξ̄ξ

)

dz − ξ̄dζ , ω1 = ξdz +

(

1 − 1

2
ξ̄ξ

)

dζ , ω2 = dξ ,

A2κ = −
(

z̄ dz − z dz̄ − ζ̄ dζ − ζ dζ̄
)

, AC =
1

2

(

ξdξ̄ + ξ̄dξ
)

. (3.56)

It is now easy to rewrite the invariant Lagrangians (2.1), (3.2) and (3.6) of the previous

sections in a manifestly invariant form in terms of pullbacks of the above Cartan forms:

L0 = |ω̂P |2 + ω̂1 ˆ̄ω1 + iκÂ2κ , L̃ = |ω̂P |2 + iκÂ2κ , L = |ω̂P |2 + iκÂ2κ + 2iMÂC . (3.57)

Here the “hat” denotes a pullback. Note that the passage from the superplane Landau

model, with Lagrangian L0, to the M = 0 planar superflag model, with Lagrangian L̃,

involves the subtraction of the term ω̂1 ˆ̄ω1. The Lagrangian L0 is necessarily independent

of the ξ, ξ̄ variables because it is invariant under local SU(1|1) transformations that rotate

the forms ωP and ω1 (and their conjugates) into each other.

Note also that the equation of motion (3.4) derived from L̃ has the following nice

representation in terms of the Cartan forms:

ω̂1 ˆ̄ωP = 0 . (3.58)

This equation has two solutions. One is

ω̂1 = 0 , (3.59)

which a covariant inverse Higgs-type constraint [9] that is equivalent to (3.5). The other is

ω̂P = 0 ⇒ ż = −ξ̄ζ̇ , (3.60)

in which case all other equations of motion are identically satisfied. As we have seen, this

second solution reduces the model to its LLL sector.

Finally, we explain the geometric meaning of the wavefunctions Ψ(N) which are eigen-

vectors of the Hamiltonian Ĥ defined in (3.31). As a first step, we note that the full

10As the second U(1) in the denominator of (3.51) corresponds to an outer automorphism of ISU(1|1)

(see (2.30), (2.31)), there appears no connection associated with its generator J .
11The A2κ connection given here is equivalent to the connection defined by (3.55) but differs from it by

a field-dependent gauge transformation.
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generators Q̂, Q̂† calculated by the Noether procedure from the Lagrangian L defined in

(3.6) are given by

Q̂ = Q − ∂

∂ξ
− Mξ̄ , Q̂† = Q† − ∂

∂ξ̄
− Mξ , (3.61)

where Q,Q† were defined in (2.25). Correspondingly, the full C charge appearing in

{Q̂, Q̂†} = Ĉ is given by

Ĉ = C + 2M ≡ C + C̃ , (3.62)

where C, the purely differential part of Ĉ, was defined in (2.26). The additional term

C̃ = 2M can be interpreted as the “external” C charge of the general wavefunction

Ψ(z, z̄, ξ, ξ̄, ζ, ζ̄), in accordance with the fact that this function is given on the coset mani-

fold IU(1|1)/[U(1)×U(1)×Z] and can possess non-zero quantum numbers of the stability

subgroup. The generator Z acts on Ψ just as the multiplication of the latter by the central

charge κ.12 Thus the wavefunction Ψ carries the “magnetic” central charge κ and the

external C charge C̃ = 2M .

For the next step we find it convenient to use the parametrization (z, z̄, ξi, ξ̄i) of sub-

section 3.2. In accord with the standard rules of the nonlinear realizations theory, the

covariant differential DΨ of Ψ, as well as covariant derivatives of Ψ are defined by the

relation

DΨ =
(

d + A2κ κ + AC C̃
)

Ψ ≡ −ωPDzΨ − ω̄PDz̄Ψ + ωiDiΨ + ω̄iD̄iΨ , (3.63)

where the signs were again chosen for further convenience. It is easy to find the explicit

form of these covariant derivatives. In particular,

Dz = K
1

2

1 ∇z , Dz̄ = K
1

2

1 ∇z̄ , {Dz,Dz̄} = 2κ , (3.64)

where ∇z,∇z̄ were defined in (3.29). The covariant spinor derivatives D̄i are:

D̄1 = K
1

2

1

(

∂

∂ξ̄1
− ξ2∂z̄ − κξ1 K−1

1

)

, D̄2 =
∂

∂ξ̄2
+ z̄

∂

∂ξ̄1
− 1

2
ξ2 C̃. (3.65)

They satisfy the following non-zero covariant (anti)commutation relations

[D̄1,Dz] = [D̄1,Dz̄] = 0 , [D̄2,Dz] = 0 , [D̄2,Dz̄] = −D̄1 , (3.66)

{D̄1, D̄2} = 0 . (3.67)

One should take into account that all coset coordinates and their covariant derivatives

are inert under the action of the “magnetic” central charge Z which has the non-zero

eigenvalue κ only on the wave function Ψ; at the same time, the U(1) charge C has a

non-trivial left action on the coset coordinates z, z̄, ξ1, ξ̄1 as follows from the commutation

relations (2.28). Under the above normalization, such that Ψ has the external C̃ charge

equal 2M , the covariant derivatives D̄1 , Dz , Dz̄ have, respectively, the C̃ charges +1,+1

12One can assign to Ψ also a non-zero external charge associated with the outer automorphisms U(1)

generator J the differential part of which is given in (2.30). However, this U(1) has no actual implications

in the considered model.
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and −1, while D2, D̄2 are C̃-neutral. This C̃ assignment should be kept in mind while

checking the relations (3.66), (3.67). The standard (non-covariant) commutation relations

(without taking account of the non-trivial C̃ connection terms in D2, D̄2) can be easily

derived from the above covariant ones.

Representing the covariant derivatives D̄i on Ψ (i.e. with C̃ = 2M) by

D̄1 = K
1

2

1 ϕ̄1 , D̄2 = ϕ̄2 + z̄ϕ̄1 , (3.68)

it is easy to see that the physical state conditions (3.32) are equivalent to

D̄iΨ = 0 , (3.69)

which is the standard covariant form of the chirality conditions. The prefactors in the

solution (3.34) serve to eliminate the connection terms in D̄i when the latter act on the

reduced wave function Φ . After that, the conditions (3.69) are solved by passing to the

chiral basis (z, z̄sh). The derivative Dz̄ also becomes short on Φ(z, z̄sh, ξi): Dz̄ → D̃z̄ =

K
1

2

1 ∂z̄sh
. Thanks to the commutation relations (3.66), it is then consistent to impose the

additional analyticity constraint on the ground state Φ(z, z̄sh, ξi), viz. D̃z̄Φ = 0 → Φ =

Φ0(z, ξi) .

When dealing with the eigenvalue problem of the Hamiltonian in the previous subsec-

tion, we worked with the operators ∇z ,∇z̄, which can be treated as a type of creation and

annihilation operator (see (3.30)). Using the covariant derivatives Dz,Dz̄, eq. (3.64), the

analogy with the quantum oscillator becomes literal, because their commutator equals a

constant and the Hamiltonian can be rewritten in the standard oscillator form:

Ĥ = −DzDz̄ + κ . (3.70)

The eigenvector for the Landau level N can be rewritten as

Ψ(N) = (Dz)
N K

M−N

2

1 e−κK2Φ
(N)
0

(

z, ξi
)

. (3.71)

The corresponding ground state reduced wave function Φ
(N)
0 has C̃ = 2M − N , while the

whole Ψ(N) has C̃ = 2M , since each Dz adds C̃ = 1. The formula (3.43) for the energy

levels can be equivalently derived using the commutation relations (3.64). Note that the

Hamiltonian commutes with the chirality constraints (3.69) in a weak sense, [Ĥ, D̄2] ∼ ϕ̄1 .

4. Summary

In previous papers we solved the Landau problem for a particle on the supersphere

SU(2|1/U(1|1) and the superflag SU(2|1)/[U(1)×U(1)]. The latter coset superspace allows

two WZ terms, and hence a family of Landau models, for fixed magnetic field, parametrized

by the coefficient M of a “fermionic Wess-Zumino” term. The equivalence of the M = 0

model with the supersphere Landau model was implicit in these results, but not explained

by them. In this paper we have reconsidered these models in the planar limit.
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The supersphere model becomes the “superplane” Landau model for a particle on

C
(1|1); this is a model with a quadratic Lagrangian that is the sum of the standard Landau

model with a four-state “fermionic Landau model”. The latter has just two Landau levels,

each spanned by two states, with the excited states having negative norm. This provides a

simple explanation for the negative norm states, or “ghosts”, in all but the lowest Landau

level of the supersphere model, and it shows clearly that ghosts arise as a result of second-

order fermion kinetic terms.

The planar limit of the superflag model yields a model that we have called the “planar

superflag” Landau model. It is an extension of the superplane to include interactions with

an additional Goldstino variable. For M = 0 this variable is auxiliary and the superplane

model is recovered on eliminating it; this explains the equivalence between the superplane

and M = 0 superflag models. The motivation for considering the M > 0 superflag model

(planar or spherical) is that the second-order fermion kinetic terms responsible for ghosts

are “suppressed” in the sense that the coefficient becomes nilpotent. As a result, the ghosts

are not eliminated entirely but just banished to the higher Landau levels. Specifically, the

Nth level is ghost-free if and only if N ≤ 2M .

Another curious, and related, feature of the M > 0 planar superflag models is that

the second class fermionic constraints (which are standard in models with anticommuting

variables) cease to be entirely second-class on a fixed-energy subspace of the phase space,

thus implying the presence of a gauge-invariance on this energy surface. In fact, when

restricted to this exceptional energy the planar superflag Landau model becomes a type

of time-reparametrization invariant superparticle model with a “hidden” fermionic gauge

invariance. However, this gauge invariance has an effect on the quantum theory only when

the exceptional energy surface is one of the Landau levels, and this happens only when 2M

is an integer. In this case, the fermionic gauge invariance leads to short supermultiplets

for the states at the (2M + 1)th Landau level, this being the lowest Landau level for

M = 0. The short supermultiplets are exactly as expected from our previous results for

the supersphere and superflag Landau models.

Although the super-Landau models analysed here have ghosts, it is possible to consis-

tently truncate to a ghost free theory. One could throw out just the ghosts, but this would

break the SU(2|1) symmetry that was the rationale for the construction of these models.

Instead, one can throw out all Landau levels that contain ghosts. For M = 0 this is equiv-

alent to keeping only the lowest Landau level, which defines the non-(anti)commutative

complex superplane that results from taking the planar limit of the fuzzy supersphere.

Our M > 0 planar superflag models, truncated to the first 2[M ] + 1 levels, can be consid-

ered as generalizations of this construction to allow for a finite set of higher Landau levels.

As the Hilbert space still has finite dimension, the quantum theory defines a fuzzy version

of the supermanifold obtained from the planar limit of the superflag.

Note added. After submission to the archives, we learnt of a paper of Hasebe [10] in

which a planar super-Landau model is obtained as the planar limit of a Landau model for

a particle on the coset superspace OSp(1|2)/U(1). This “supersphere” has real dimension

(2|4), and is therefore “non-minimal” in comparison to the supersphere defined here as
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CP (1|1), but it can be viewed as a superspace of real dimension (2|2) with the help of

a “pseudoconjugation” operation that squares to −1 when acting on spinors. This leads

to a planar super-Landau model that is superficially equivalent to the superplane Landau

model discussed here. However the wave superfunction of the present paper and that of [10],

are functions on superspaces with different involutions. The relation between these two

superspaces is not known to us; our wave superfunctions are essentially ordinary superfields.

We stress that our interest here is in quantum models carrying unitary representations of

IU(1|1); the natural norm chosen here is the unique norm generating invariant theories.

We believe that the norm of [10] is a “bi-orthogonal” norm [11] (see also [12]), and we plan

to return to this point in a future work with T. Curtright.
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[6] M. Bañados, L.J. Garay and M. Henneaux, The dynamical structure of higher dimensional

Chern-Simons theory, Nucl. Phys. B 476 (1996) 611 [hep-th/9605159].

[7] E. Ivanov, L. Mezincescu, A. Pashnev and P.K. Townsend, Odd coset quantum mechanics,

Phys. Lett. B 566 (2003) 175 [hep-th/0301241].

[8] M. Hatsuda, S. Iso and H. Umetsu, Noncommutative superspace, supermatrix and lowest

Landau level, Nucl. Phys. B 671 (2003) 217 [hep-th/0306251].

[9] E.A. Ivanov and V.I. Ogievetsky, The inverse Higgs phenomenon in nonlinear realizations,

Teor. Mat. Fiz. 25 (1975) 164.

– 21 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C51%2C605
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C9%2C69
http://xxx.lanl.gov/abs/hep-th/0311159
http://xxx.lanl.gov/abs/hep-th/0404108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB476%2C611
http://xxx.lanl.gov/abs/hep-th/9605159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB566%2C175
http://xxx.lanl.gov/abs/hep-th/0301241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB671%2C217
http://xxx.lanl.gov/abs/hep-th/0306251


J
H
E
P
0
1
(
2
0
0
6
)
1
4
3

[10] K. Hasebe, Supersymmetric extension of noncommutative spaces, berry phases and quantum

Hall effects, hep-th/0503162.

[11] C.L. Bender, Introduction to PT -symmetric quantum theory, quant-ph/0501052.

[12] T. Curtright and L. Mezincescu, Biorthogonal quantum systems, quant-ph/0507015.

– 22 –

http://xxx.lanl.gov/abs/hep-th/0503162
http://xxx.lanl.gov/abs/quant-ph/0501052
http://xxx.lanl.gov/abs/quant-ph/0507015

